翻訳と辞書
Words near each other
・ Lappa, Rethymno
・ Lappach
・ Lappajärvi
・ Lappalanjärvi
・ Lapja
・ Lapka
・ Lapko
・ Laplace (disambiguation)
・ Laplace Affair
・ Laplace distribution
・ Laplace equation for irrotational flow
・ Laplace expansion
・ Laplace expansion (potential)
・ Laplace formula
・ Laplace functional
Laplace invariant
・ Laplace Island
・ Laplace Island (Antarctica)
・ Laplace Island (Western Australia)
・ Laplace limit
・ Laplace no Ma
・ Laplace number
・ Laplace operator
・ Laplace operators in differential geometry
・ Laplace plane
・ Laplace pressure
・ Laplace principle (large deviations theory)
・ Laplace transform
・ Laplace transform applied to differential equations
・ Laplace's demon


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Laplace invariant : ウィキペディア英語版
Laplace invariant
In differential equations, the Laplace invariant of any of certain differential operators is a certain function of the coefficients and their derivatives. Consider a bivariate hyperbolic differential operator of the second order
:\partial_x \, \partial_y + a\,\partial_x + b\,\partial_y + c, \,
whose coefficients
: a=a(x,y), \ \ b=c(x,y), \ \ c=c(x,y),
are smooth functions of two variables. Its Laplace invariants have the form
:\hat= c- ab -a_x \quad \text \quad \hat=c- ab -b_y.
Their importance is due to the classical theorem:
Theorem: ''Two operators of the form are equivalent under gauge transformations if and only if their Laplace invariants coincide pairwise.''
Here the operators

:A \quad \text \quad \tilde A
are called ''equivalent'' if there is a gauge transformation that takes one to the other:
: \tilde Ag= e^A(e^g)\equiv A_\varphi g.
Laplace invariants can be regarded as factorization "remainders" for the initial operator ''A'':
:\partial_x\, \partial_y + a\,\partial_x + b\,\partial_y + c = \left\
(\partial_x + b)(\partial_y + a) - ab - a_x + c ,\\
(\partial_y + a)(\partial_x + b) - ab - b_y + c .
\end\right.
If at least one of Laplace invariants is not equal to zero, i.e.
: c- ab -a_x \neq 0 \quad \text \quad
c- ab -b_y \neq 0,
then this representation is a first step of the Laplace–Darboux transformations used for solving
''non-factorizable'' bivariate linear partial differential equations (LPDEs).
If both Laplace invariants are equal to zero, i.e.
: c- ab -a_x=0 \quad \text \quad
c- ab -b_y =0,
then the differential operator ''A'' is factorizable and corresponding linear partial differential equation of second order is solvable.
Laplace invariants have been introduced for a bivariate linear partial differential operator (LPDO) of order 2 and of hyperbolic type. They are a particular case of ''generalized invariants'' which can be constructed for a bivariate LPDO of arbitrary order and arbitrary type; see Invariant factorization of LPDOs.
==See also==

* Partial derivative
* Invariant (mathematics)
* Invariant theory

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Laplace invariant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.